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The problem under consideration is the plane steady motion of an ideal 

incompressible gravity-free fluid of infinite depth past an inclined 

plate under a free boundary. The formulation of the problem corresponds 

closely to the motion of a plate in the case of a large Froude number. 

The solution is obtained by using the methods of the theory of jets. 

1. The flow pattern in the physical z = x + iy plane is shown on 

Fig. 1. 

A flow of speed V,, is impinging upon the plate. The velocity vector 

at infinity makes an angle al with the plate. Far upstream, the stream- 

line which passes through the for- 

ward stagnation point D is at a dis- 

tance h from the free surface EF. It 

is assumed that the point B is the 

-- rear stagnation point, i. e. that the 

Joukowski-Chaplygin condition is 

satisfied. 

Figure 2 shows the situation in 

terms of the following complex vari- 

able: 

Fig. 1. 

6 = Vodz / dw = (V, / V) eie 

where V is the speed and 8 is the angle the velocity vector makes with 

the real axis. In the 6 plane, the plate corresponds to the real axis. 
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The free surface in the 6 plane corresponds to a circular arc slit 
on the circle @I = 1, between the angles of largest inclination 8, I and 
smallest inclination 6, of the free stream surface. Thus, in the 6 plane 
the flow takes place in a doubly connected domain obtained by removing 
a circular arc from the upper half-plane. 

Figure 3 shows the complex potential plane w = Q + iy. It is assumed, 
(see Fig. f), that y = 0 along CD. At the point n we take 9) = 0. Since 
t0 One and the same point z on the streamline v = 0 there may correspond 

two distinct values of the potential 
‘p, one must have a slit. or cut, along 
the real axis, v = 0. to the right of 

Fig. 2. Fig. 3. 

the point D. The difference between the values of Q at the points B and 
B’ (Fig. 3), is obviously equal to the circulation around the plate. 

The solution of the problem in question may be obtained by determin- 
ing the conformal representation of the domains of the motion in the @ 
and 1~ planes on a domain in a parametric v plane. that is to find 

zf = V,dz 1 dw = fl (v), 10 = fa (81) (1-i) 

As the parametric domain we shall choose the interior of a rectangle. 

2. Let us map the interior of a rectangle in the v plane conformally 
onto the domain of the motion in the w plane. First we shall map the w 
domain on the upper half-plane of an auxiliary variable T. Let us map 
the points E, F, D of Fig. 3 into the points f = OJ, T = 1 and 7 = 0 of 
the real axis. Employing the Schwarz-Christoffel formula. we obtain 

U> = c, fz + in (z - I) - axi] (2.Q 

For real T >l, the stream function y = hVo; taking this into account, 
and comparing the imaginary parts of both sides of equation (2.1). we 
can deter’mine Cl and obtain 

hlr, 
u’ = - -;i- fz + In (T - 1) - nil (2.2) 

In the 7 plane the plate corresponds to the segment B’B of the real 
axis, and the free surface corresponds to the semi infinite iine FE 
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(Fig. 4). 

Let us now map the upper T half-plane on the interior of the rec- 
tangle in the parametric v plane of Fig. 5. Suppose, in doing this, that 
the segment B’B corresponds to the lower side of the rectangle, while 

the segment FE corresponds to the upper 
side of the rectangle. 

Employing anew the Schwarz-Christoffel 
formula, we may write 

Fig. 4. 

v = A1 * I/(t - Sl) ctdf ss) (t - sg) + Aa s (2.3) 

where SI = 1. s2 and s3 are the coordinates of the points F, B and B’ 

in the T plane. Let us introduce the new variable tl = t + s; and the 
abbreviations 

& f 

8, + s = el’, h+d=ea’, s,+s=e,’ 
0 

where s is defined by means of the condi- 
tion: el* + e2’ + es’ = 0. 

Then (2.3) may be written as follows: 

00 

v=2A1 

Fig. 5. 

Inverting the integral, we obtain 

(2.5) 

where PO is the elliptic function of Weierstrass, with periods 91, Q,, 
which are expressed in terms of e 1” eg’ and es’ by means of the 
formulas 

4= (2.6) 

Here K and K’ are the complete elliptic integrals of the first kind 
with the moduli 

In turn, the roots el’, eg’ and e3’ may be expressed in terms of the 
periods RI, !$ by means of the formulas 

el’ = FL-J P/n WV e,’ = 0, Ws ( 9, + Q,)), ei = ‘9, (l/a t-2,) (2.8) 
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Employing (2.8)) and fulfilling the conditions for correspondence be- 

tween points, we obtain, after simple transformations, that 

z + a = P* (r + l/2 522) (2.2) 

The base, If,, and the height, H,, of the rectangle, are given by 

H, = r/1 Q,, H, = ‘Ia 8, (2.10) 

The quantity 2A, has thus been set equal to unity, which amounts to 
choosing the scale of measurement. From the theory of elliptic functions, 

[I] we use the known formulas relating @ (v + l/2 !$) and &OQ( u) , and 6% and 
the Jacobi functions, we may write 

z = smba (v ‘r/l_) + s, en” (u 1/I - 6J (2.11) 

where the functions sn and cn have the modulus k of (2.7). 

3. Let us map the domain of the flow in the 6 plane on the 6, plane, 

in such a way that the contour of the “plate” in the ti plane goes into 

the unit circle in the 6, plane and that the slit corresponding to the 

free surface, in 

in the 6, plane. 

This required 

given by 

the 6 Plane is mapped into a portion of the real axis 

transformation (Fig. 6) is 

6,_=-ii+ I (3.1) 

Applying to the 6, plane the Joukowski 

transformation: 
Fig. 6. 

6, = ‘/a (6, + 6,-l) (3.2) 

we may transform the unit circle in the 6, plane on the slit from -1 to 

+l along the real axis in the 6, plane. The alit corresponding to the 

“free surface” also falls on the real 6, axis. The end points al and a2 

of this slit (Fig. 7) are related to the limiting values of the slope 

of the free surface by means of the equations 

1 1 
ar=z&e,, a, = G-i& 

The point at infinity, upstream, on the free surface corresponds to 

the point on the lower side of the slit, 

s with affix __& (3.4) 

-/ D 1 B-f E.f 
The exterior of two slits (see [21) may 

Fig. ‘7. be mapped onto a rectangle in the u plane 
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(Fig. 8) by means of the relations 

6, = im 15 (II -a) - 5 (u fall + C (3.5) 

where 5 is the Weierstrass function. The “plate” segment goes into the 

base of the rectangle, of length 01, the segment representing the “free 
surface” goes over into the top side of the rectangle, and the remainder 

of the real aXiS goes into the vertical sides, of height l/2 w2. The 

Purely imaginary number a is the image in the u plane of the point at 

infinity in the 6, plane. The point at the rear of the plate goes over 

into a point on the base of the rectangle with affix ~1. The constants 

0, m, C. and the ratio of the periods 02/wl 

determine the coordinates of the end points 

of the slits in the 6, plane. 

Employing a known formula from the 

theory of elliptic functions, (3.5 may be 

replaced by 

1 P’ (a) 
62 = im 0 (IL)- I(a) - 25 (a)] + C (3.6) 

where &J(U) is the elliptic function of 

Weierstrass. with periods 01 and 02. On Fig. 8. 

the imaginary axis p(u) is real and nega- 

tive, and b~‘( u) is imaginary and negative. On the real axis p(u) varies 

from OJ to 63(1/2 01) = el and is symmetric with respect to u = l/2 01. 

It may be shown that, along the base of the rectangle, the value 

u = 0 corresponds to the minimum 6, = - 1, and the value u = l/2 01 cor- 

responds to the maximum &, = + 1. Employing this fact, one may deter- 

mine the two constants in (3.6); and, after inserting the obtained 

values of the constants, one may rewrite (3.6) in the form 

(3.7) 

The two constants a and 02/wl remain free, because the end points of 

the “free surface” are not prescribed in the 8, plane. 

Let us choose the sides of our rectangle in the u plane equal to the 

corresponding sides of the rectangle in the v plane. Then, from (2.10). 

we obtain 

0 1 = l/* Q,, co2 = Q, (3.8) 

If the abscissa Up of the points E, F equals the abscissa p of the 
points B’B. then the conformal mapping of the 6, domain on the rectangle 

in the v plane (Fig. 5) may be obtained, in view of the periodicity of 
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the function p(u), by putting u = v + u in (3.7). 

Indeed, if this choice is made, then the contours of the rectangles 

coincide, the bases correspond to the “plate” and the tops correspond 

to the “free surface”. The positions of the points B’, B, E and F will 

then agree. Let us writ,e down the condition which guarantees that ul =P. 

The number ul may be obtained from (3.7) for 6, = l/cos al, according 

to (3.4). 

Carrying out the corresponding calculations for ~1, we obtain the 

equation 

where el, ex and e3 are connected with the periods 01 and wp of the 

function p(u) by relations which are analogous to (2.8). 

The number u may be expressed in terms of the coordinates u1 and u2 

of the stagnation point D, which corresponds to 6, = 0 and to 7 = 0. 

From (3.7) and (2.11) we obtain the following equations for the deter- 

mination of u2 and vg: 

91 (4 = - W1 (a), 

-_ 
sn2 (~2 1/l - sg) % 
c,p (V2 VI - s$ 

_ - - 
% 

(3.10) 

From the equation u = v + ~1 (Figs. 5 and 8) it follows that one has 

p = II* - v2. 

The equation “I = p implies that ul = u2 - vx. 

Substituting this result into (3.9), and replacing p(a) by means of 

(3.10) 0 we obtain the following equation for ug: 

P(u,-- yp) ( -- 0, (4 e3 coral - 1 -e, 
e2 el - e3cosa1 + 1 

+ i)(-$@;;z;; 3 1’+ *)-I (3.11) 

Employing the addition theorem for .$?, and the relation connecting 9’ 

and @, we obtain from (3.11) an algebraic equation for I, whose solu- 

tion yields u2, after which a may be obtained from (3.10). 

In order to determine the constants corresponding to a given angle 

of attack a, it is convenient to fix first the values s2 and s3; then 

to obtain n, and R, from (2.6) and (2.7). then v2 from (3. lo), and then 

01 and o2 from (3.8). Knowing 01 and 02, one may then compute el, eg 

and ex, by means of formulas which are analogous to (2.8); and then 

(3.11) may be solved. Further, (3.10) then determined p(a), and hence V 

may be obtained. 
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Combining equations (3. l), (3.2) and (3.7). and observing that 
a = v + ct, we get 

by means of which the domain in the 6 plane is mapped conformally on the 
rectangle in the parametric plane Y. The conformal mapping between the 
m and u planes is given by the formulas (2.2) and (2.11). 

Once V@dz/dw = fl(u) and w = f*(u) are known, then the pressure dis- 
tribution on the plate, the resultant forces, the streamlines, and so 
forth, may be determined by the usual methods c31. 
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